Chem. Ber. 116, 3631 – 3636 (1983)

Facile Synthesis of 2-Alkoxy-2-aryloxiranes

Norbert De Kimpe*1, Laurent De Buyck, Roland Verhé, and Niceas Schamp

Laboratory of Organic Chemistry, Faculty of Agricultural Sciences, State University of Gent, Coupure Links, 653, B-9000 Gent, Belgium

Received February 28, 1983

Tertiary α -bromoalkyl aryl ketones 1 were converted into 2-alkoxy-2-aryloxiranes 4 exclusively by reaction with excess potassium carbonate in the corresponding dry alcohol. Silver carbonate in a dry alcohol with these α -bromo ketones yielded competitively formation of 2-alkoxyoxiranes and semi-benzilic *Favorskii* rearrangement (\rightarrow 5), while silver hexafluoroantimonate in the same medium afforded the latter rearrangement reaction exclusively.

Eine einfache Darstellung von 2-Alkoxy-2-aryloxiranen

Tertiäre (α -Bromalkyl)arylketone 1 reagierten mit überschüssigem Kaliumcarbonat in trockenem Alkohol ausschließlich zu den entsprechenden 2-Alkoxy-2-aryloxiranen 4. Silbercarbonat in trockenem Alkohol führte in einer Konkurrenzreaktion zur Bildung von 4 und zu einer semibenzilischen Favorskii-Umlagerung (\rightarrow 5). Dagegen trat mit Silber-hexafluoroantimonat ausschließlich die letztere Umlagerungsreaktion ein.

In the course of our recent investigations in the field of α -acylcarbenium ions²⁾ and α -imidoylcarbenium ions³⁾, we came across the reaction of 2-bromoisobutyrophenone 1 (R = CH₃; R'' = H) with silver carbonate in dry methanol at room temperature, leading to two competitive reactions, namely semi-benzilic *Favorskii* rearrangement (63%) and 2-methoxy-2-phenyloxirane formation (33%). The *Favorskii*-type rearrangement gave rise to methyl 2-methyl-2-phenylpropionate (5) according to a mechanism by which the methanol adduct 2 undergoes a silver-assisted ionization of the carbonhalogen bond with migration of the phenyl group. Whether or not α -acylcarbenium

© Verlag Chemie GmbH, D-6940 Weinheim, 1983 0009 - 2940/83/1111 - 3631 \$ 02.50/0

ions are involved in such reactions is still a point of discussion⁴⁾. Not only the silver ion-promoted reaction took place but hemi-acetal 2 was also deprotonated by the base (silver carbonate) to afford anion 3, which yielded intramolecular nucleophilic substitution with formation of 2-methoxyoxirane 4a. The reasoning behind this dual reactivity, as outlined in the scheme, implicates that a less basic silver reagent, e.g. silver hexafluoroantimonate, would give rise to the *Favorskii*-type rearrangement, exclusively, and that the semi-benzilic rearrangement could be eliminated by using a basic non-silver reagent, bearing in mind that the reagent should be compatible with the rather labile nature of the final 2-alkoxyoxiranes 4 thus formed.

In fact, 2-bromoisobutyrophenone 1 ($R = CH_3$, R'' = H) reacted with silver hexafluoroantimonate in methanol at room temperature to afford methyl 2-methyl-2-phenylpropionate (5), exclusively, a result which is in complete accordance with an analogous experiment with 1-bromocyclohexyl phenyl ketone which afforded methyl 1-phenylcyclohexanecarboxylate⁴). Similar conversions of 2-bromoisobutyrophenone-type compounds to the carboxylic acids with silver nitrate have been described previously 5,6).

The second idea in our hypothesis, put forward above, proved to open a successful route to 2-alkoxy-2-aryloxiranes 4. The reaction was performed in a dry alcohol (methanol, ethanol) in the presence of a five molar excess of dry potassium carbonate (room temperature; 1-5 hours). Non-aqueous work-up provides 2-alkoxy-2-aryloxiranes as colorless liquids as the sole products (80-92%). Results of this synthesis of α -functionalized epoxides, together with their 1H NMR data are presented in Table 1, while the ^{13}C NMR data of compounds 4 are compiled in Table 2.

The reaction described in this paper is limited to tertiary α -bromo ketones 1. Secondary α -bromo ketones, e.g. 2-bromopropiophenone (7), afforded α -hydroxyacetal 8, exclusively, on reaction with potassium carbonate in methanol at room temperature (2 hours). This reaction product resulted from ring-opening of the intermediate α -methoxyepoxide in the methanolic medium. The same reaction with phenacyl bromide 1 (R = R'' = H) only produced tars.

The reaction of α -bromo ketones 1 to afford 2-alkoxy-2-aryloxiranes 4 is a simple high-yield alternative to previously published syntheses, which employed equimolecular amounts of sodium methoxide in alcoholic $^{7-10,20)}$ or ethereal $^{11-16)}$ medium. By appropriate choice of the reagents, α -bromoalkyl aryl ketones 1 can be converted into either

2-alkoxy-2-aryloxiranes 4 or rearranged esters, e.g. 5, or into a mixture of both compounds 4 and 5. The title compounds have been previously shown to be versatile synthons for a variety of heterocyclic compounds, among others 2-oxazolines ¹⁷⁾, 2-oxazolidinones ^{18,19,23)}, and 1,3-dioxolanes ²¹⁾, while their aminolysis is a convenient route to otherwise difficultly accessible α -(N-alkyl)aminoketones ^{10,20,22,24)}.

The authors are indebted to the Belgian National Fund for Scientific Research for financial support to the laboratory.

Experimental Part

Infrared spectra: Perkin Elmer model 1310 spectrophotometer. - ¹H NMR spectra: Varian T-60 NMR spectrometer. - ¹³C NMR spectra: Varian FT-80 NMR spectrometer.

 α -Bromoalkyl aryl ketones 1 were prepared by a standard bromination procedure, involving reaction of the parent ketone with 1.05 molar equivalents of bromine in dichloromethane (ambient temperature), after which (\approx 15 min) the reaction mixture was poured into water, extracted with dichloromethane, the combined organic phases being washed with aqueous sodium hydrogensulfite and brine; after drying (MgSO₄) and filtration, the solvent was removed in vacuo and the remaining oil was distilled in vacuo to afford α -bromo ketones 1 as oils.

Physical data and yields: 2-bromo-2-methylpropiophenone: b.p. 85-89 °C/0.3 torr (94%); 2-bromo-4'-chloro-2-methylpropiophenone: b.p. 78-84 °C/0.01 torr (92%); 2-bromo-4'-fluoro-2-methylpropiophenone: b.p. 70-72 °C/0.01 torr (89%); 2-bromo-2-ethylbutyrophenone: b.p. 90-100 °C/0.01 torr (86%).

2-Alkoxy-2-aryloxiranes 4: A solution of 0.05 mol of α -bromo ketone 1 in 20 ml of dry alcohol (methanol or ethanol) was stirred at ambient temperature with 0.25 mol of dry potassium carbonate. After being stirred for the time indicated in Table 1 (1 – 5 h) the reaction mixture was stirred with 50 ml of dry diethyl ether and filtered, the solid being washed with dry ether. The combined filtrates were evaporated under vacuo to leave a slurry which was again treated as above, i.e. trituration with ether (50 ml), filtration, and evaporation. This procedure is repeated another time, if necessary, in order to obtain a clear oil (colorless in most cases). The remaining oil (shown to be pure 2-alkoxy-2-aryloxirane 4 by 1 H NMR) was distilled in vacuo to afford compounds 4. Yields and physical data are given in Table 1 while 13 C NMR data are compiled in Table 2. The infrared spectra of 4 (NaCl; liquid film) did not show characteristic absorptions.

Reaction of 2-bromoisobutyrophenone with silver carbonate in methanol: A solution of 2.27 g (0.01 mol) of 2-bromoisobutyrophenone (1, $R = CH_3$; R'' = H) in 20 ml of dry methanol was treated with 2.76 g (0.01 mol) of silver carbonate. The suspension was stirred for 18 h at ambient temperature and subsequently treated with 50 ml of dichloromethane, filtered and the precipitate washed with dichloromethane. The combined filtrates were evaporated to afford a clear oil which was analyzed by gas chromatography (SE 30 column) and spectrometric methods. The reaction mixture was shown to consist of 63% of methyl 2-methyl-2-phenylpropionate (5) and 33% of 2-methoxy-3,3-dimethyl-2-phenyloxirane (4a).

Reaction of 2-bromoisobutyrophenone with silver hexafluoroantimonate in methanol: A solution of 0.22 g (1.00 mmol) of 2-bromoisobutyrophenone (1, $R = CH_3$; R'' = H) in 3 ml of dry methanol was stirred with 0.51 g (1.5 mmol) of silver hexafluoroantimonate at room temperature for 2 h. The suspension was poured into water and extracted with ether. The combined ether extracts were dried (MgSO₄) and evaporated to leave 90% of methyl 2-methyl-2-phenylpropionate (5) as a colorless liquid.

Chem. Ber. 116 (1983)

Table 1. Physical and spectrometric data of 2-alkoxy-2-aryloxiranes 4

					ade nun ma	מונטוויבנוני ממומ מו 7.	race 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	~	OR'	Κ,	Reaction Time	Yield (%)	b.p. °C/torr	¹ H NMR (δ) ⁴⁾
4 8	Me	4a Me OMe	н	2 h RT	98	$22 - 23/0.01^{\mathrm{b}}$	δ(CDCl ₃): 1.00 (3 H, s, trans CH ₃); 1.53 (3 H, s, cis CH ₃); 3.20 (3 H, s, OCH ₃); 7.2 – 7.5 (5 H, m, C ₆ H ₅)
4	Me	OMe	ū	2 h RT	88	37 – 38/0.01	8(CCl ₄): 0.96 (3H, s, trans CH ₃); 1.46 (3H, s, cis CH ₃); 3.14 (3H, s, OCH ₃); 7.33 (4H, s, C ₆ H ₄)
4c	Me	ОМе	Ħ	1 h RT	92 c)	I	8(CCl ₄): 0.95 (3H, s, trans CH ₃); 1.46 (3H, s, cis CH ₃); 3.15 (3H, s, OCH ₃); 6.9 – 7.6 (4H, m, C ₆ H ₄)
4	Me	OEt	Ħ	4 h RT	83 d)	28 – 29/0.01	$\delta(CCl_4)$: 0.93 (3H, s, trans CH ₃); 1.48 (3H, s, cis CH ₃); 1.10 (3H, t, $J = 7$ Hz, O-C-CH ₃); 3.1-3.7 (2H, m, OCH ₂); 7.2-7.6 (5H, m, C ₆ H ₅)
4	Me	OEt	ם	2.5 h RT	68	54 – 56/0.01	$\delta(CCl_4)$: 0.94 (3H, s, trans CH ₃); 1.47 (3H, s, cis CH ₃); 3.1-3.7 (2H, m, OCH ₂); 1.12 (3H, t, $J=7$ Hz, O-C-CH ₃); 7.37 (4H, s, C_6H_4)
4	Me	OEt	Ĺ	5 h RT	98	30 – 31/0.01	$\delta(CCl_4)$: 0.92 (3H, s, trans CH ₃); 1.45 (3H, s, cis CH ₃); 1.10 (3H, t, $J = 7$ Hz, $O - C - CH_3$); 3.1–3.7 (2H, m, OCH_2); 6.8–7.6 (4H, m, C_6H_4)
4 %	Ē	ОМе	Н	1 h RT	80	43 – 47/0.01 °)	$\delta(CCl_4)$: 0.75 (3H, t, trans CH ₃); 0.9–1.5 (5H, m, overlap, cis CH ₃ + trans CH ₂); 1.6–2.1 (2H, m, cis CH ₂); 7.1–7.5 (5H, m, C_6H_5); 3.10 (3H, s, OCH ₃)

^{a)} The terms *cis* and *trans* in this column denote positions *cis* and *trans* with respect to the alkoxy substituent. $^{-6}$ Lit. ¹⁴⁾ $^{-6}$ Lip. $^{-8}$ S5 $^{-8}$ S.5 $^{-6}$ C/9,5 torr; Lit. ²⁰⁾ b.p. 55 $^{-6}$ Co.0.5 torr. $^{-6}$ Crude yield (without distillation); purity $^{-9}$ S5 $^{-6}$ Lit. $^{-20}$ b.p. $^{-7}$ 74 corr. $^{-6}$ Lit. $^{-16}$ b.p. 81 $^{-8}$ S2 C/2.7 torr.

Table 2. ¹³C NMR data of 2-alkoxy-2-aryloxiranes 4^{a_1} $C^{-}C^{-}O^{-}$

8 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6	91.33 90.85 90.86 90.86 90.39	C-3 66.92 67.17 67.17 66.69 66.69	52.37 52.30 52.30 60.92 61.00 52.30	C-2 C-3 O-C-1" O-C-2" 4a 91.33 66.92 \$2.37 - 26 4b 90.85 67.17 \$2.40 - 19 4c 91.02 67.17 \$2.30 - 19 4d 90.86 66.49 60.92 15.30 20 4e 90.39 66.69 61.00 15.29 19 4f 90.52 66.69 60.93 15.31 19 4g 91.02 73.43 52.20 66.69	20.05 19.82 19.95 19.77 19.99 19.89 19.89 19.89 19.95	C-1' 134.97 134.51c) 131.08 (d) (J = 3.24 Hz) 135.66 135.66 134.37 131.70 (d) (J = 3.21 Hz) 135.35	Aromatic Carbons C-2' C2' C 128.07 b) 128.44 b) 130.02 (d) 130.02 (d) 145.95 b) 128.41 b) 129.82 (d) 145.92 (d) 178.90 178.90 178.90	tbons C-3' 128.12b) 129.50b) 115.23 (d) (J = 21.66 Hz) 128.04b) 129.41b) 115.10 (d) (J = 21.71 Hz) 138.09	C-4' 128.41 133.60¢) 163.59 (d) (J = 247.25 Hz) 128.26 - d) 162.94 (d) (J = 247.00 Hz) 178.35
M	7(:1(et.c.	9		22.78 (CH ₂) 22.78 (CH ₂)				

^{a)} Noise decoupled spectra (CDCl₃); appropriate multiplicities (not indicated) were observed under SFORD conditions. $^{-}$ ^{b)} Chemical shifts for the *ortho* and *meta* carbons may be inverted. $^{-}$ ^{c)} Or vice versa. $^{-}$ ^{d)} Invisible (presumably overlap with signal at 134.37).

Chem. Ber. 116 (1983)

- ¹⁾ N. De Kimpe, Bevoegdverklaard Navorser (Research Associate) of the Belgian Nationaal Fonds voor Wetenschappelijk Onderzoek (National Fund for Scientific Research).
- 2) For a review article on the chemistry of α-acylcarbenium ions see: J.-P. Bégué and M. Charpentier-Morize, Acc. Chem. Res. 13, 207 (1980).
- ³⁾ N. De Kimpe, R. Verhé, L. De Buyck, N. Schamp, and M. Charpentier-Morize, Tetrahedron Lett. 23, 2853 (1982).
- 4) D. Baudry and M. Charpentier-Morize, Tetrahedron Lett. 1973, 3013.
- 5) A. C. Cope and E. S. Graham, J. Am. Chem. Soc. 73, 4702 (1951).
- 6) D. N. Kevill and N. H. Cromwell, J. Org. Chem. 29, 499 (1964).
- 7) C. L. Stevens, M. L. Weiner, and R. C. Freeman, J. Am. Chem. Soc. 75, 3977 (1953).
- 8) C. L. Stevens and J. J. De Young, J. Am. Chem. Soc. 76, 718 (1954).
- ⁹⁾ C. L. Stevens and S. J. Dijkstra, J. Am. Chem. Soc. 75, 5975 (1953).
- 10) Parke, Davis & Co. (Inv. C. L. Stevens), US-Pat. 3254124 (May 31, 1966, Appl. July 31, 1961 and June 29, 1962) [Chem. Abstr. 65, 5414d (1966)].
- 11) C. L. Stevens, W. Malik, and R. Pratt, J. Am. Chem. Soc. 72, 4758 (1950).
- 12) T. I. Temnikova and E. N. Kropacheva, Zh. Obshch. Khim. 19, 1917 (1949) [Chem. Abstr. 44, 1929 b (1950)].
- 13) T. I. Temnikova, A. K. Petryaeva, and S. S. Skorokhodov, Zh. Obshch. Khim. 25, 1575 (1955) [Chem. Abstr. 50, 4891 f (1956)].
- 14) T. I. Temnikova and N. I. Almachi, Zh. Obshch. Khim. 23, 1338 (1953) [Chem. Abstr. 48, 12025 b (1954)].
- 15) T. I. Temnikova and N. I. Almachi, Zh. Obshch. Khim. 23, 1498 (1953) [Chem. Abstr. 48, 12025 f (1954)].
- ¹⁶⁾ C. L. Stevens and T. H. Coffield, J. Am. Chem. Soc. 80, 1919 (1958).
- 17) T. I. Temnikova and T. E. Zhesko, Zh. Obshch. Khim. 33, 3436 (1963) [Chem. Abstr. 60, 1738c (1964)].
- 18) T. Toda, Nippon Kagaku Kaishi (J. Chem. Soc. Japan, Chem. Ind. Chem.) 1982, 289.
- 19) T. Toda, Chem. Lett. 1977, 957.
- ²⁰⁾ H. Schulz, E. Jassmann, and R. Kowarsch, Ger. (East) Pat. 50619 (Oct. 5, 1966, Appl. Nov. 24, 1965) [Chem. Abstr. 67, 21614b (1967)].
- ²¹⁾ V. N. Yandovskii and T. I. Temnikova, Zh. Org. Khim. 4, 1758 (1968) [Chem. Abstr. 70, 19960e (1969)].
- 22) Parke, Davis & Co. (Inv. C. L. Stevens and R. W. Fleming), Fr. Pat. 1447116 (July 29, 1966, US. Appl. Dec. 19, 1958) [Chem. Abstr. 66, P 104826c (1967)].
- 23) Tokyo Tanabe Co., Ltd. (Inv. T. Toda), Japan. Kokai 76 54553 (May 13, 1976, Appl. 74/127232, Nov. 6, 1974) [Chem. Abstr. 86, 5439k (1977)].
- ²⁴⁾ C. L. Stevens and C. H. Chang, J. Org. Chem. 27, 4392 (1962).

[59/83]